Printed in Great Britain, Tetrahedron Letters No. 19, pp 1677 - 1680, 1973. Pergamon Press.

> A NOVEL SYNTHESIS OF S-TRIAZOLOAZINES FUSED AT THE N2-C3 BOND OF THE TRIAZOLE RING

S. Polanc, B. Verček, B. Stanovnik, M. Tišler

Department of Chemistry, University of Ljubljana

(Received in UK 13 March 1973; accepted for publication 28 March 1973)

So far, there is no simple and general synthetic method for the preparation of 2-unsubstituted s-triazoloazines with bridgehead nitrogen and where the triazole ring is fused to the azine ring through the N_2-C_3 bond. Several synthetic approaches were employed for building such heterocyclic systems. Thus, the corresponding s-triazolo(1,5-a)pyridines (I), s-triazolo-(2,3-b)pyridazines (II),² and s-triazolo(1,5-a)pyrazines (III)³ were prepared by oxidative cyclization of the corresponding 2-azinylamidines.

On the other hand, the s-triazolo(2,3-a)pyrimidine system (IV) is formed when 3-amino-1,2,4-triazoles are condensed with 1,3-dicarbonyl compounds The reaction may lead also to the isomeric s-triazolo(4,3-a)pyrimidines. Moreover, isomerization of s-triazolo(4,3-a)pyrimidines into s-triazolo-(2,3-a)pyrimidines can occur in a thermal, acid or base catalyzed reaction.⁴ s-Triazolo(2,3-a)triazines (V) were obtained in a similar manner, either from 3-amino-s-triazole ⁵ or 2-hydrazino-1,3,5-triazin-4-one derivatives. 6

We here give an account of a versatile synthesis of these heterocyclic systems, starting from the corresponding aminoazines. With N,N-dimethylaminoformamide dimethylacetal these were transformed into N,N-dimethylaminomethylene derivatives (VI) and further transformation with hydroxylamine yielded VII. Cyclization to VIII could be achieved with polyphosphoric acid or, in

the case of II (R=Cl), by heating the corresponding oxime over its melting point (Table I).

In addition, the s-triazolo(2,3-b)pvridazine system could be synthesized from 6-aminotetrazolo(1,5-b)pyridazine by converting this compound successively into its N,N-dimethylaminomethylene derivative and further into IX, which upon cyclization underwent spontaneous opening of the tetrazole ring to give X. This represents another case of the azido-tetrazolo

isomerization which we have observed previously with related systems.⁷

Compound ^{a)}	м.р.(⁰ С)	Nmr data (in CDCl ₃): t (multiplicity, proton), J
I, R=NO ₂	204-208	1.62 (s, P_2) , 0.50 (d, P_5) , 1.82 (dd, P_7) , 2.30 (dd, P_8) ; $J_{5,7} = 2.0$, $J_{7,8} = 9.0$ Hz
ΪΙ,R=H	138-142	1.62 (s, H_2), 1.56 (dd, H_6), 2.58 (dd, H_7), 1.92 (dd, H_8); $J_{6,7} = 4.2$, $J_{7,8} = 8.9$, $J_{6,8} = 1.8$ Hz
II,R=Cl	135-138	1.58 (s, H_2), 2.63 (dd, H_7), 1.93 (dd, H_8); $J_{7,8} = 9.0 Hz$
II, R=N ₃	158-162	1.75 (s, H_2), 3.10 (d, H_7), 2.08 (d, H_8); $J_{7,8} =$ 9.0 Hz
III,R=H	127	1.50 (s, H_2), 1.42 (dd, H_5), 1.81 (d, H_6), 0.63 (d, H_8); $J_{5,6} = 4.5$, $J_{5,8} = 1.5$ Hz
III,R=Cl	108-110	1.50 (s, H_2), 1.80 (s, H_6), 0.82 (s, H_8)
$IV, R=R_1=H$	140-141 ^{b)}	1.48 (s, H_2), 1.13 (dd, H_6), 2.83 (dd, H_7), 1.05 (dd, H_8); $J_{6,7} = 4.8$, $J_{6,8} = 1.0$, $J_{7,8} = 6.9$ Hz
V, R= mor- pholino	218-222	2.20 (s, H ₂), 5.75 and 6.25 (m, morpholino)

Table I

^{a)}For all compounds satisfactory analytical data were obtained. ^{b)}Lit.⁸ gives m.p. 140-142^o.

In the case of 2-amino-4-methylpyrimidine as starting compound, cyclization can involve either N₁ or N₃ atom of the pyrimidine ring. In fact, both isomers (IV, R = Me, R₁ = H, and R = H, R₁ = Me) were formed in ratio of 1:5.

Finally, it should be mentioned that when the described reaction sequence was applied to 2-aminopyridine, instead of the bicyclic derivative pyridylurea was isolated, indicating that a Beckmann rearrangement took place.

<u>Acknowledgement</u> -- This work was supported by a grant from the Boris Kidrič Foundation, Ljubljana.

REFERENCES

- 1. J. D. Bower and G. R. Ramage, J. Chem. Soc., 4506 (1957).
- 2. M. Zupan, B. Stanovnik, and M. Tišler, Tetrahedron Letters, 4179 (1972).
- T. Okamoto, Y. Torigoe, M. Sato, and Y. Isogai, Chem. Pharm. Bull., <u>16</u>, 1154 (1968).
- W. L. Mosby: Heterocyclic Systems with Bridgehead Nitrogen Atoms, Part II p. 878, Interscience, 1961.
- 5. E. C. Taylor, R. W. Hendess, J. Amer. Chem. Soc., 87, 1980 (1965).
- 6. J. Kobe, B. Stanovnik, and M. Tišler, Tetrahedron, 26, 3357 (1970).
- 7. B. Stanovnik, M. Tišler, and B. Stefanov, J. Org. Chem., <u>36</u>, 3812 (1971), and previous papers cited therein.
- C. F. H. Allen, H. R. Beilfuss, D. M. Burness, G. A. Reynolds, J. F. Tinker, and J. A. Van Allan, J. Org. Chem., <u>24</u>, 796 (1959).